Metode CRISPR/CAS dan Minimalisasi Off-Target: Review

Authors

  • Sophia Sophia Program Studi Pemuliaan dan Bioteknologi Tanaman, Departemen Agronomi dan Hortikultura, Fakultas Pertanian, Institut Pertanian Bogor
  • Muhammad Antony Program Studi Pemuliaan dan Bioteknologi Tanaman, Departemen Agronomi dan Hortikultura, Fakultas Pertanian, Institut Pertanian Bogor
  • Muh Aswad Ashan Program Studi Pemuliaan dan Bioteknologi Tanaman, Departemen Agronomi dan Hortikultura, Fakultas Pertanian, Institut Pertanian Bogor
  • Hafizh Fadhullah Program Studi Pemuliaan dan Bioteknologi Tanaman, Departemen Agronomi dan Hortikultura, Fakultas Pertanian, Institut Pertanian Bogor
  • Rika M Jannah Program Studi Pemuliaan dan Bioteknologi Tanaman, Departemen Agronomi dan Hortikultura, Fakultas Pertanian, Institut Pertanian Bogor

DOI:

https://doi.org/10.61761/agiotech.1.1.17-30

Keywords:

CRISPR, Cas9, sgRNA, Off-target

Abstract

Aplikasi bioteknologi dengan pendekatan rekayasa genetika seperti genome editing berhasil dalam memperbaiki sifat tanaman dengan tujuan meningkatkan kualitas hasil. Keberhasilan CRISPR/Cas9 untuk memodifikasi genom dengan presisi yang belum pernah terjadi sebelumnya dapat disebabkan oleh akurasi, efisiensi, efektivitas biaya, dan kemudahan penggunaan. Mekanisme pengeditan genom CRISPR/Cas9 adalah memanipulasi gen dengan cara menyisipkan, mengganti, menghapus satu basa atau lebih pada sekuen tertentu. Oleh karena adanya penyisipan atau pergantian gen tersebut, metode CRISPR/Cas dapat menyebabkan efek di luar target (off-target) yang merusak pada tingkat genomik. Artikel ini membahas perkembangan CRISPR/Cas9, mekanisme CRISPR/Cas9, dan metode minimalisasi off-target yang sering terjadi pada sistem CRISPR/Cas9. Metode dalam meminimalisir off-target dari penggunaan CRISPR/Cas9 dapat dilakukan melalui beberapa cara yaitu: (1) modifikasi sgRNA terkait konten GC sgRNA, panjang sgRNA, truncated gRNA, modifikasi kimia sgRNA, dan modifikasi sgRNA in silico, (2) modifikasi protein Cas, dan (3) metode delivery CRISPR

References

Butler, N.M., Atkins, P.A., Voytas, D.F., Douches, D.S. (2015). Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLos One, 10: e0144591.

Char, S.N., Neelakandan, A.K., Nahampun, H., Frame, B., Main, M., Spalding, M.H., Becraft, P.W., Meyers, B.C., Walbot, V., Wang, K., Yang, B. (2017). An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J., 15:257-268.

Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D., Wei, P., Cao, F., Zhun, S., Feng, Z., Mao, Y., Zhu, J. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23:1229-1232.

Jia, H., Wang, N. (2014). Targeted genome editing of sweet orange using Cas9/sgRNA. Plos One, 9(4): e93806.

Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., Weeks, D.P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res., 41(20): e188.

Kim, D., Kim, J., Hur, J.K., Been, K.W., Yoon, S., Kim, J.S. (2016). Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology, 34 (8): 863.

Kim, H.K., Song, M., Lee, J., Menon, A.V., Jung, S., Kang, Y.M., Choi, J.W., Woo, E., Koh, H.C., Nam, J.W. (2017). In vivo high-throughput profiling of CRISPR–Cpf1 activity. Nature methods, 14(2): 153.

Kleinstiver, B.P., Tsai, S.Q., Prew, M.S., Nguyen, N.T., Welch, M.M., Lopez, J.M., McCaw, Z.R., Aryee, M.J., Joung, J.K. (2016). Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nature Biotechnology, 34(8): 869.

Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., Joung, J.K. (2016). High-fidelity CRISPR-Cas9 nucleases with no detectable genome- wide off-target effects. Nature, 529(7587): 490–495. https://doi.org/10.1038/nature16526

Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol., 31:688–91.

Naeem, M., Majeed, S., Hoque, M.Z., Ahmad, I. (2020). Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells, 9(7):1608.

Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D., Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA- guided endonuclease. Nat Biotechnol., 31:691-693.

Pan, C.T., Ye, L., Qin, L., Liu, X., He, Y.J., Wang, J., et al. (2016). CRISPR/Cas9–mediated efficient and heritable targeted mutagenesis in tomato plant in the first and later generation. Sci. Rep., 6:24765.

Rusk, N. (2019). Spotlight on Cas12. Nature methods, 16(3): 215.

Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L. (2013). Targeted genome modification of crop plants using a CRISPR- Cas system. Nat Biotechnol., 31: 686-688.

Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science, 351(6268): 84-88.

Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y. (2016). Enhanced rice blast resistance by CRISPR/Cas9–targeted mutagenesis of the ERF transcription factor gene OsERF922. Plos One, 11: e0154027

Downloads

Published

28-12-2023

How to Cite

Sophia, S., Antony, M., Ashan, M. A., Fadhullah, H., & Jannah, R. M. (2023). Metode CRISPR/CAS dan Minimalisasi Off-Target: Review. Agriculture and Biological Technology, 1(1), 17–30. https://doi.org/10.61761/agiotech.1.1.17-30

Issue

Section

Articles