Bioactive Potential of Marine Biota (Algae, Sponges, and Marine Bacteria) as a Source of Antimicrobial Compounds
DOI:
https://doi.org/10.61761/seamas.3.1.19-26Keywords:
marine biota, antibiotic resistance, antibacterials, bioactive compoundsAbstract
Antimicrobial resistance has become one of the most serious global health threats, prompting the search for new natural sources of antibiotics. Marine biota, such as algae, sponges, and bacteria, are known to produce a variety of secondary metabolites with potential biological activity, particularly as antimicrobial compounds. This review article examines the bioactive potential of these marine biota as an alternative source of natural antibacterial compounds. The study was conducted by reviewing various international and national literature related to the bioactive metabolites produced, their mechanisms of action against pathogenic bacteria, and the potential for their use in developing new antibacterial agents. The results of the review indicate that sulfated polysaccharides, terpenoids, alkaloids, and phenolic compounds from algae; alkaloids, cyclic peptides, and terpenoids from sponges; and secondary metabolites of marine symbiont bacteria have significant antibacterial activity, including against antibiotic-resistant bacteria. However, the development of marine bioactive compounds still faces various obstacles, particularly related to isolation techniques, mass production, and environmental sustainability issues. Therefore, modern biotechnological approaches, such as genomics, metabolomics, and synthetic biology, are needed to optimize the utilization of these marine resources. This article confirms that marine biota are important candidates for the development of new, sustainable antibacterial agents and have the potential to support the strengthening of the blue economy concept.
References
Afreen, A., Fazle, R., Masroor, F. (2023). Bioactive Properties of Brown Seaweed, Sargassum wightii, and Its Nutritional, Therapeutic Potential and Health Benefits: A Review. Journal of Environmental Biology, 44: 146-158.
Anteneh, Y.S., Yang, Q., Brown, M.H., Franco, C.M.M. (2021). Antimicrobial Activities of Marine Sponge-Associated Bacteria. Microorganisms, 9(1): 171.
Asih, E.N.N., Kartika, A.G.D. (2021). Potensi dan Karakteristik Bakteri Simbion Karang Lunak Sinularia sp. sebagai Anti Bakteri Escherichia coli dari Perairan Pulau Gili Labak Madura Indonesia. Journal of Marine Research, 10(3): 355-362.
Baimakhanova, B.B., Sadanov, A.K., Ratnikova, I.A., Baimakhanova, G.B., Orasymbet, S.E., Amitova, A.A., Aitkaliyeva, G.S., Kakimova, A.B. (2025). In Silico Modeling of Metabolic Pathways in Probiotic Microorganisms for Functional Food Biotechnology. Fermentation, 11(8): 458.
Besednova, N.N., Andryukov, B.G., Zaporozhets, T.S., Kryzhanovsky, S.P., Kuznetsova, T.A., Fedyanina, L.N., Makarenkova, I.D., Zvyagintseva, T.N. (2020). Algae Polyphenolic Compounds and Modern Antibacterial Strategies: Current Achievements and Immediate Prospects. Biomedicines, 8(9): 342.
Brinkmann, C.M., Marker, A., Kurtböke, D.İ. (2017). An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery. Diversity, 9(4): 40.
Carroll, A.R., Copp, B.R. Grkovic, T., Keyzers, R.A., Prinsep, M.R. (2025). Marine Natural Products. Nat. Prod. Rep., 42: 257.
Cathartica, A., Junando, M., Sayoeti, M.F.W., Suri, N. (2025). Narrative Review: Penggunaan Antibiotik Reserve dalam Era Resistensi Antimikroba. Sains Medisina, 3(4): 131–138.
Chen, J., Xu, L., Zhou, Y., Han, B. (2021). Natural Products from Actinomycetes Associated with Marine Organisms. Marine drugs, 19(11): 629.
De La Hoz-Romo, M.C., Díaz, L., Villamil, L. (2022). Marine Actinobacteria: A New Source of Antibacterial Metabolites to Treat Acne Vulgaris Disease: A Systematic Literature Review. Antibiotics, 11(7)
Díez-Vives, C., Koutsouveli, V., Conejero, M., Riesgo, A. (2022). Global Patterns in Symbiont Selection and Transmission Strategies in sponges. Front. Ecol. Evol. 10:1015592.
Du, R., Xiong, W., Xu, L. et al. (2023). Metagenomics Reveals the Habitat Specificity of Biosynthetic Potential of Secondary Metabolites in Global Food Fermentations. Microbiome, 11:115
Emelda, E., Safitri, E.A., Fatmawati, A. (2021). Inhibition Activity of Ethanolic Extract of Ulva lactuca Against Staphylococcus aureus. Pharmaceutical Journal of Indonesia, 7(1): 43-48.
Fernández, S., Arnáiz, V., Rufo, D., Arroyo, Y. (2024). Current Status of Indole-Derived Marine Natural Products: Synthetic Approaches and Therapeutic Applications. Marine Drugs, 22(3): 126.
Flores-Contreras, E.A., Araújo, R.G., Rodríguez-Aguayo, A.A., Guzmán-Román, M., García-Venegas, J.C., Nájera-Martínez, E.F., Sosa-Hernández, J.E., Iqbal, H.M.N., Melchor-Martínez, E.M., Parra-Saldivar, R. (2023). Polysaccharides from the Sargassum and Brown Algae Genus: Extraction, Purification, and Their Potential Therapeutic Applications. Plants, 12(13): 2445.
Gallo, G., Aulitto, M. (2024). Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life, 14(9): 1205.
Gaudêncio, S.P., Bayram, E., Lukić-Bilela, L., Cueto, M., Díaz-Marrero, A.R., Haznedaroglu, B.Z., Jimenez, C., Mandalakis, M., Pereira, F., Reyes, F., Tasdemir, D. (2023). Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Marine Drugs, 21(5), 308.
Giudice, A.L., Rizzo, C. (2022). Bacteria Associated with Benthic Invertebrates from Extreme Marine Environments: Promising but Underexplored Sources of Biotechnologically Relevant Molecules. Marine Drugs, 20(10): 617.
Ibraheem, I.B.M., Alharbi, R.M., Abdel-Raouf, N., Al-Enazi, N.M., Alsamhary, K.I., Ali, H.M. (2025). Algal Metabolites as Novel Therapeutics Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Review. Pharmaceutics, 17(8): 989.
Kasmiati, K., Nurunnisa, A.T., Amran, A., Resya, M.I., Rahmi, M.H. (2022). Antibacterial Activity and Toxicity of Halymenia durvillei Red Seaweed from Kayangan Island, South Sulawesi, Indonesia. Fish Aquat Sci., 25(8): 417-428.
Kumar, A., Soratur, A., Kumar, S., Venmathi-Maran, B.A. (2025). A Review of Marine Algae as a Sustainable Source of Antiviral and Anticancer Compounds. Macromol, 5(1), 11.
Lomartire, S., Gonçalves, A.M.M. (2023). An Overview on Antimicrobial Potential of Edible Terrestrial Plants and Marine Macroalgae Rhodophyta and Chlorophyta Extracts. Marine Drugs, 21(3): 163.
Martínez-Chávez, L.A., Hernández-Ramírez, M.Y., Feregrino-Pérez, A.A., Esquivel-Escalante, K. (2024). Cutting-Edge Strategies to Enhance Bioactive Compound Production in Plants: Potential Value of Integration of Elicitation, Metabolic Engineering, and Green Nanotechnology. Agronomy, 14(12): 2822.
Mir, R.H., Mir, P.A., Uppal, J., Chawla, A., Patel, M., Bardakci, F., Adnan, M., Mohi-Ud-Din, R. (2023). Evolution of Natural Product Scaffolds as Potential Proteasome Inhibitors in Developing Cancer Therapeutics. Metabolites, 13(4), 509.
Murray, C.J.L. (2022). Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. The Lancet, 399 (10325): 629 - 655.
Nugraha, A.S., Firli, L.N., Rani, D.M. (2023). Kontribusi Laut Indonesia dan Pengobatannya. Nat. Prod. Bioprospect., 13, 38.
Nwachukwu, B.C., Babalola, O.O. (2022). Metagenomics: A Tool for Exploring Key Microbiome with the Potentials for Improving Sustainable Agriculture. Front. Sustain. Food Syst. 6:886987.
Petersen, LE., Kellermann, M.Y., Schupp, P.J. (2020). Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology. In: Jungblut, S., Liebich, V., Bode-Dalby, M. (eds) YOUMARES 9 - The Oceans: Our Research, Our Future. Springer, Cham.
Putri, L., Sasadara, M.M.V., Cahyaningsih, E., Santoso, P. (2023). Uji Aktivitas Antibakteri Ekstrak Etanol Bulung Sangu (Gracilaria sp.) terhadap Bakteri Gram Negatif Pseudomonas aeruginosa. Usadha, 2(4): 20-26.
Ramadhanty, M.A., Lunggani, A.T., Nurhayati, N. (2021). Isolasi Bakteri Endofit Asal Tumbuhan Mangrove Avicennia marina dan Kemampuannya sebagai Antimikroba Patogen Staphylococcus aureus dan Salmonella typhi secara in vitro. NICHE Journal of Tropical Biology, 4(1): 16-22.
Rodrigues, C.J.C., Carvalho C.C.C.R.D. (2022). Cultivating Marine Bacteria under Laboratory Conditions: Overcoming the "Unculturable" Dogma. Front. Bioeng. Biotechnol.10:964589.
Romano, G., Almeida, M., Varela-Coelho, A., Cutignano, A., Gonçalves, L.G., Hansen, E., Khnykin, D., Mass, T., Ramšak, A., Rocha, M.S., Silva, T. H., Sugni, M., Ballarin, L., Genevière, A.M. (2022). Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Marine Drugs, 20(4): 219.
Rosari, A., Aninditia, S., Diah, A., Oktavianto, E.J. (2024). Optimasi Konsentrasi Primer dan Suhu Annealing untuk Deteksi Gen PKS-I pada Bakteri Asosiasi Mangrove Avicennia marina Asal Pantai Tirang, Semarang. Jurnal Pasir Laut, 8: 123-129.
Ruiz, V.V., Gándara-Ledezma, A., Villarreal-Delgado, M.F., Villa-Rodríguez, E.D., Parra-Cota, F.I., Santoyo, G., Gómez-Godínez, L.J., Cira Chávez, L.A., De Los Santos-Villalobos, S. (2024). Regulation, Biosynthesis, and Extraction of Bacillus-Derived Lipopeptides and Its Implications in Biological Control of Phytopathogens. Stresses, 4(1): 107-132.
Si, T., Wang, A., Yan, H., Kong, L., Guan, L., He, C., Ma, Y., Zhang, H., Ma, H. (2024). Progress in the Study of Natural Antimicrobial Active Substances in Pseudomonas aeruginosa. Molecules,16: 29(18):4400.
Subramani, R., Sipkema, D. (2019). Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Marine Drugs, 17(5): 249.
Tailor, N.K., Deswal, G., Grewal, A.S. (2024). Aaptamine: A Versatile Marine Alkaloid for Antioxidant, Antibacterial, and Anticancer Therapeutics. Chemistry, 6(4): 677-694.
Wang, E., Sorolla, M.A., Gopal Krishnan, P.D., Sorolla, A. (2020). From Seabed to Bedside: A Review on Promising Marine Anticancer Compounds. Biomolecules, 10(2): 248.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sri Wahyuni, Asri Mursawal, Ronal Kurniawan

This work is licensed under a Creative Commons Attribution 4.0 International License.